
ART I C L E

Me t h o d s , T o o l s , a n d T e c h n o l o g i e s

Quantifying effort needed to estimate species diversity
from citizen science data

Corey T. Callaghan1,2 | Diana E. Bowler1,3,4 | Shane A. Blowes1,5 |

Jonathan M. Chase1,5 | Mitchell B. Lyons6 | Henrique M. Pereira1,2,7

1German Centre for Integrative
Biodiversity Research (iDiv) Halle-Jena-
Leipzig, Leipzig, Germany
2Institute of Biology, Martin Luther
University Halle-Wittenberg, Halle
(Saale), Germany
3Institute of Biodiversity, Friedrich
Schiller University Jena, Jena, Germany
4Department of Ecosystem Services,
Helmholtz Center for Environmental
Research-UFZ, Leipzig, Germany
5Institute of Computer Science, Martin
Luther University Halle-Wittenberg, Halle
(Saale), Germany
6Centre for Ecosystem Science, School of
Biological, Earth and Environmental
Sciences, UNSW Sydney, Sydney, New
South Wales, Australia
7CIBIO (Research Centre in Biodiversity
and Genetic Resources)–InBIO (Research
Network in Biodiversity and Evolutionary
Biology), Universidade do Porto, Vair~ao,
Portugal

Correspondence
Corey T. Callaghan
Email: c.callaghan@unsw.edu.au

Handling Editor: Debra P. C. Peters

Abstract

Broad-scale biodiversity monitoring relies, at least in part, on the efforts of

citizen, or community, scientists. To ensure robust inferences from citizen

science data, it is important to understand the spatial pattern of sampling

effort by citizen scientists and how it deviates from an optimal pattern.

Here, we develop a generalized workflow to estimate the optimal distribu-

tion of sampling effort for inference of species diversity (e.g., species rich-

ness, Shannon diversity, and Simpson’s diversity) patterns using the

relationship between species diversity and land cover. We used data from

the eBird citizen science project that was collected across heterogeneous

landscapes in Florida (USA) to illustrate this workflow across different

grain sizes. We found that a relatively small number of samples are needed

to meet 95% sampling completeness when diversity estimation is focused

on dominant species: 43, 64, 96, 123, 172, and 176 for 5 � 5, 10 � 10,

15 � 15, 20 � 20, 25 � 25, and 30 � 30-km2 grain sizes, respectively. In

contrast, three to five times more samples are necessary to infer species

diversity when estimation is focused on rare species. However, in both

cases, the optimal distribution of effort was spatially heterogeneous, with

more effort needed in regions of higher diversity. Our results highlight the

potential of citizen science data to make informed comparisons of species

diversity in space and time, as well as how sampling effort inherently

depends on monitoring goals, such as whether dominant or rare species

are targeted. Our general workflow allows for the quantification of sam-

pling effort needed to estimate species diversity with citizen science data

and can guide future adaptive sampling by citizen science participants.
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INTRODUCTION

With the development of open science, large-scale biodi-
versity databases have enabled better estimates of the dis-
tribution and abundance of species, enhancing our
understanding of biodiversity patterns in time and space.
For example, there are currently more than 1.6 billion
species observations in the Global Biodiversity Informa-
tion Facility (GBIF; www.gbif.org) and the amount of
data in GBIF has increased 12-fold since 2007 (Heberling
et al., 2021). Despite this rapid growth of global biodiver-
sity data, estimates of biodiversity in many parts of the
world remain at best imprecise and at worst nonexistent
(Boakes et al., 2010; Cornwell et al., 2019; Essl
et al., 2013; Scheffers et al., 2012; Stork, 1993). These geo-
graphic differences largely stem from variation in sam-
pling effort. Monitoring biodiversity is increasingly
important in the face of anthropogenic changes and asso-
ciated ongoing biodiversity losses (Butchart et al., 2010;
IPBES, 2019) and plays a core role in indicator develop-
ment for conservation decision-making, such as the Post-
2020 Global Biodiversity Framework of the Convention on
Biological Diversity (Xu et al., 2021). Nevertheless, biodi-
versity monitoring is expensive and time-consuming, with
generally insufficient funding (Bakker et al., 2010).

Future biodiversity monitoring will likely rely, at least
in part, on broad-scale citizen science (also called com-
munity science) data (Bonney et al., 2009; Chandler
et al., 2017; McKinley et al., 2017; Pereira et al., 2017).
Already, citizen science data have proven useful for a
wide variety of applications, including monitoring
marine protected areas (Freiwald et al., 2018), developing
conservation strategies for migratory species of birds
(Schuster et al., 2019), highlighting the negative impacts
of roads on amphibians (Cosentino et al., 2014), enabling
continental-scale population trend estimation of birds
(Brlıḱ et al., 2021), rapidly mapping the effects of bush-
fires on biodiversity (Kirchhoff et al., 2021), and under-
standing the effects of the COVID-19 “anthropause” on
biodiversity (Vardi et al., 2021). Clearly, the scope and
extent of citizen science projects and the resulting data
are rapidly increasing (Pocock et al., 2017). In 2020, for
example, the web app iNaturalist (www.inaturalist.org),
which allows naturalist observers to take pictures and
upload georeferenced observations, averaged about
63,000 observations per day. As the quantity of data con-
tinues to increase, the potential of these data for biodiver-
sity research also increases.

Biodiversity-focused citizen science projects cover a
broad range of biodiversity data collection activities
(Isaac & Pocock, 2015; Kelling et al., 2019; Welvaert &
Caley, 2016). Generally, projects range from unstructured
(e.g., no formal training, very few instructions, and

observations can take place wherever and whenever; e.g.,
iNaturalist) to semistructured (e.g., minimal training and
few instructions, but important metadata are collected as
part of the observation process; e.g., eBird) to structured
(e.g., formally trained, experienced, participants who con-
duct repeated surveys in time and space; e.g., Reef Life
Survey). For those projects that allow participants to
select their own sites to survey biodiversity, sites are
rarely selected at random. For instance, there are often
hotspots of data contributions from urban areas and their
surroundings, highly accessible areas, or sites within
nature reserves (Hugo & Altwegg, 2017; Husby
et al., 2021; Tiago, Ceia-Hasse, et al., 2017). As the num-
ber of participants in broad-scale citizen science projects
continues to grow, there is increased potential for redun-
dancy of effort as new participants sample the same set of
sites already sampled by others (Callaghan, Poore,
et al., 2019). In this light, there is a need to better under-
stand the data collection patterns of citizen science partici-
pants, allowing for the development of guidelines for how
biodiversity sampling might be improved for the estimation
of biodiversity metrics across scales (Callaghan et al., 2021;
Callaghan, Rowley, et al., 2019).

Diversity estimates, and in particular, species richness,
play an important role in conservation spatial planning.
For example, diversity estimates (e.g., species richness,
Shannon diversity, and Simpson’s diversity) are often used
to identify priority areas for protection in conservation-
planning decisions ranging from local (e.g., patch-specific)
to landscape (e.g., municipality) scales (Boyd et al., 2008).
Species richness is the most intuitive, easily calculated,
and probably the most commonly used diversity metric in
studies of biodiversity patterns (Gotelli & Colwell, 2001;
Magurran & McGill, 2011). Moreover, there are a number
of techniques that allow for the extrapolation and compar-
ison of species richness, such as rarefaction (e.g., Chao
et al., 2009; Colwell & Coddington, 1994; McGlinn
et al., 2019). Therefore, despite potential drawbacks
(Fleishman et al., 2006; Hillebrand et al., 2018), species
richness remains a useful metric that is possible to esti-
mate with citizen science data. Indeed, species richness
measured from citizen science data has been shown to be
comparable with professionally collected data (Roman
et al., 2017; Van der Wal et al., 2015).

Here, we aimed to demonstrate the applicability of
citizen science data to estimate species diversity
(e.g., species richness, Shannon diversity, and Simpson’s
diversity, additional measures that are less sensitive to
rare species) at multiple spatial scales and to show how
citizen science sampling effort could be guided toward
improving the accuracy of diversity estimates. We devel-
oped a generalized workflow to estimate the optimal dis-
tribution of sampling effort for inference of species
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diversity patterns. This workflow can be continuously
updated as data are collected and thus can be used to
guide the site selection of participants to improve data
collection of citizen science projects. To achieve this goal,
we had three specific objectives: (1) test relationships
between species diversity, land-cover attributes
(e.g., habitat heterogeneity and urban cover), and sam-
pling effort; (2) quantify the relationship between sample
completeness (i.e., the probability that a new species
would be found if sampling continued; Chao &
Jost, 2012) and land-cover attributes; and (3) predict opti-
mal effort (i.e., number of citizen science observations)
needed to infer species diversity. Because estimates of
biodiversity and its change in space and time are them-
selves scale-dependent (Chase et al., 2019), we examined
how our results vary with spatial grain, testing the ability
of citizen science data to assess species diversity at differ-
ent spatial grains. Together, these analyses provide a use-
ful template for optimizing biodiversity sampling across
heterogeneous landscapes.

METHODS

General overview of methods

Our methodological framework can be broken down into
three parts, aligning to the objectives mentioned above:
(1) test relationships between species diversity, land-
cover attributes (e.g., habitat heterogeneity and urban
cover), and sampling effort; (2) quantify the relationship
between sample completeness and land-cover attributes;
and (3) predict optimal effort needed to infer species
diversity.

For Objective 1, we first explored the patterns in the
sampling effort of citizen science participants. Sampling
effort was quantified as the number of samples submitted
by citizen science participants. We used piecewise struc-
tural equation models (SEMs) to test the effects of land
use on real-world effort at a given site and how these
effects were mediated by observed species richness.

For Objective 2, we used rarefaction and
extrapolation-based tools (e.g., Chao et al., 2014) to quan-
tify sample completeness at a site and then used multiple
regression to quantify the relationship between sample
completeness and land-cover attributes. Sample com-
pleteness is a statistical estimate of the likelihood that a
new species would be found if sampling continued at a
given site. High values of sample completeness equate to
a low probability of a new species being found, and
vice versa. We calculated two estimates of sampling com-
pleteness: (1) standardized completeness, achieved by boo-
tstrapping random subsamples of samples at a site,

thereby standardizing sampling effort among sites prior
to calculating completeness, and (2) total completeness,
calculated using all samples at a site. In addition, to dif-
ferentiate between the sampling effort required to esti-
mate different types of species diversity, we used three
points along the continuum of a sampling completeness
profile (Chao et al., 2020): (1) q = 2, where dominant, or
highly abundant, species were the focus of species diver-
sity estimation; (2) q = 1, where each species is weighted
by its relative abundance and neither dominant or rare
species being favored; and (3) q = 0, where rare species
were more important to estimate species diversity.

For Objective 3, we used the relationships between
land use, sampling completeness, and the number of
samples to predict the effort (i.e., number of citizen sci-
ence samples) needed to infer species diversity across the
whole landscape. Since our aim here was prediction, we
used random forest models, but we note that other forms
of models (e.g., generalized linear or additive models)
could be used in this step.

eBird citizen science data

We used data from eBird because it is one of the most suc-
cessful citizen science projects to date, with >1 billion
global observations (Sullivan et al., 2009, 2014). eBird is a
semistructured project, where volunteer birdwatchers sub-
mit their observations in the form of “checklists” and indi-
cate whether or not they recorded every species they were
able to identify, that is, a “complete” checklist. In addition,
useful information regarding sampling effort, such as the
distance traveled, the duration of observation, time of
observation, and the spatial coordinates, is recorded.
Regional filters are also used to flag unusual bird observa-
tions, meaning if an observer sees a species or records a
count of species outside of the filters, then the data are
thoroughly reviewed by regional reviewers before being
added to the database (Gilfedder et al., 2019).

As a test region, we used eBird data from peninsular
Florida in the United States (Bird Conservation Region 31;
https://nabci-us.org/resources/bird-conservation-regions-
map). This region is relatively well sampled and includes
diverse habitats, including a large urban area and large
swaths of protected areas mixed with agriculture, forested,
and wetland areas, but also contains regions with few or
no eBird samples. We downloaded the eBird basic dataset
(version eBd_May_2020) and subsetted the data to include
all of 2019 (from 1 January to 31 December). Because the
distance and time spent on a given eBird checklist can
vary drastically (Kelling et al., 2015), we further subsetted
the checklists by (1) including only checklists that were
“complete”; (2) including checklists that were <120 min
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and >15 min in duration; and (3) including checklists that
traveled <1 km or sampled an area <150 ha. Although we
focused on 2019 because it had the highest amount of
data, we performed analyses for years 2014–2018 and
found qualitatively and quantitatively similar patterns.

Because sites are not predefined in eBird, and different
locations can correspond to drastically different sized habitat
patches, we aggregated eBird checklists into grids. We used
grids with six different spatial resolutions corresponding with
5 � 5, 10 � 10, 15 � 15, 20 � 20, 25 � 25, and 30 � 30-km2

grain sizes. Only grid cells that had a minimum of 25 eBird
checklists were used for analyses.

Land-cover habitat attributes

At each site across our different grain sizes, we quantified
four land-cover attributes: habitat heterogeneity, percent
cover of urban habitat, percent cover of trees, and percent
cover of water. We used the Copernicus Global Land
Cover Layers (Buchhorn et al., 2020), which is a 100-m
pixel resolution product that maps discrete land-cover
classes, as well as fractional cover of major structural
types (bare ground, crops, grass, shrub, tree, urban, per-
manent water, and seasonal water). This provided suffi-
cient detail for our case study site (i.e., Florida) and
additionally allows for transferability to other regions in
future studies. Habitat heterogeneity was calculated as
the variance of the discrete land-cover classes within the
5 � 5, 10 � 10, 15 � 15, 20 � 20, 25 � 25, and
30 � 30-km2 grid cells, and the fractional cover of the
structural types was calculated as the mean within each
grid cell. All processing for these metrics was done using
Google Earth Engine (Gorelick et al., 2017).

Understanding patterns of real-world
effort

We used the total observed species richness, land-cover
habitat attributes (described above), and sampling effort
(i.e., number of eBird checklists) in a site to quantify the
direct and indirect relationships between these variables
in a SEM framework. Our SEM consisted of two a priori lin-
ear models with a Gaussian error distribution: (1) log-
transformed number of eBird checklists as the response
variable and observed species richness, urban cover, and
habitat heterogeneity as predictor variables; and (2)
observed species richness as the response variable and habi-
tat heterogeneity, urban cover, water cover, and tree cover
as predictor variables. The SEMwas fitted using the R pack-
age piecewiseSEM v2.1.2 (Lefcheck, 2016), and we present
the results for the standardized coefficient estimates rep-
resenting the strength of the various relationships.

Relationship between sample
completeness and land-cover attributes

To quantify sample completeness, we used the iNEXT R
package (Chao et al., 2014; Chao et al., 2020; Hsieh
et al., 2016). As most citizen science platforms document
occurrence (i.e., generates presence-only data), rather
than abundance of species (e.g., iNaturalist), we calcu-
lated sample completeness for incidence data (Chao
et al., 2020), by converting eBird data to presence/
absence data (though we note that a similar approach
could be used with abundance data; Chao & Jost, 2012).
We focused on three points along the Hill number con-
tinuum: q = 0 (i.e., species richness), q = 1 (Shannon
diversity), and q = 2 (i.e., Simpson’s diversity). When
q = 0, sample completeness is the ratio of observed spe-
cies richness to true species richness; this metric does not
consider species frequencies and thus is most sensitive to
rare species. When q = 1, each species is weighted by its
relative abundance and thus does not favor dominant or
rare species in its estimation. When q = 2, sample com-
pleteness is disproportionately sensitive to species that
occur in high frequencies (i.e., dominant species) (Chao
et al., 2020). Accordingly, throughout our results we refer
to our use of q = 0, q = 1, and q = 2 as “rare species
sensitive,” “common species sensitive,” and “dominant
species sensitive,” respectively, to represent species diver-
sity. Because the results for q = 1 and q = 2 were qualita-
tively and quantitatively similar, we visualize the results
of q = 0 (“rare species sensitive”) and q = 2 (“dominant
species sensitive”) in the main text and present the
results of q = 1 in the supporting information.

Similar to species diversity estimates, estimates of
sample completeness are sensitive to sampling effort.
Therefore, to quantify the relationship between sample
completeness and land-cover characteristics, we stan-
dardized the number of checklists per site in our sample
completeness calculation. To standardize sampling effort
across grid cells of the same size, an equal number of
checklists (5, 10, 15, and 20) were resampled (N = 50)
randomly without replacement from each site, and the
sampling completeness was then estimated as described
above and averaged across the resamples. The analysis
was robust to the number of checklists chosen each time
(Appendix S1: Figure S1), and thus, we only present the
results using 10 randomly chosen checklists for each
sample. This standardized measure of completeness indi-
rectly represents the size of the species pool. For equiva-
lent sampling effort, we expect to sample a smaller
proportion of species in a large, compared to a small spe-
cies pool, meaning that lower values of standardized
completeness indicate a larger species pool. Conversely,
higher values of standardized completeness indirectly
indicate a smaller species pool.
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We used linear models with a Gaussian distribution to
assess the relationship between standardized completeness
and land-cover habitat predictors, where the mean sam-
pling completeness was the response variable and the pre-
dictor variables were the land-cover attributes (i.e., habitat
heterogeneity, tree cover, water cover, and urban cover).

Predicting effort needed to infer species
richness

To predict how many checklists were required to achieve
a target completeness, we used a random forest model,
where the response variable was the total number of
observed log10-transformed eBird checklists, and the pre-
dictor variables were the total completeness estimate,

F I GURE 1 The results of our structural equation modeling,

where the arrow goes from the predictor to the response variable,

and the numbers represent standardized regression coefficients.

These results represent the mean standardized regression

coefficient across all grain sizes

F I GURE 2 The relationship between bootstrapped sampling completeness (y-axis) and four land-cover habitat attributes (x-axis), with

habitat heterogeneity (top left), water cover (top right), urban cover (bottom left), and tree cover (bottom right) for our two measures of

completeness (i.e., dominant species sensitive and rare species sensitive). The relationship represents a linear model fit for each grain size

from 5 � 5 to 30 � 30 km2. Note the different scales for the y-axis
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habitat heterogeneity, tree cover, water cover, and
urban cover. For this objective, we used the total com-
pleteness, repeating the analysis above, but calculating
only one measure of sampling completeness, where all
available eBird checklists were included for each site
(i.e., grid cell) to differentiate the difference between
well-sampled sites and poorly sampled sites, irrespective
of sampling effort. This differs from Objective 1 (see
above) that used standardized completeness (Appendix
S1: Figure S2).

We chose a random forest model because our aim
here was prediction rather than understanding the effects
of the covariates. Our goal was to make sites comparable
for the purpose of comparing species diversity in space
and not necessarily to estimate the total diversity (Chao
et al., 2020). Therefore, we predicted the number of eBird
checklists necessary to reach a completeness of 0.95 using
our fitted random forest models. Exploratory analyses
showed that there were marginal differences between
completeness values of 0.95, 0.9, 0.85, and 0.8. This analy-
sis was repeated three times: once for completeness sensi-
tive to rare species (q = 0), once for completeness
sensitive to common species (q = 1), and once for com-
pleteness sensitive to dominant species (q = 2). To assess
the predictive performance of our random forest models,
we report the mean pseudo-R2 value, across all decision
trees, extracted from the model fit. This pseudo-R2 value
represents the mean squared error divided by the vari-
ance of our response variable. Random forest analysis
was done using the R package randomForest v4.6-14
(Liaw & Wiener, 2002). Models were fit without replace-
ment and using the recommended settings for regression
trees, which was 500 trees and a node size of 5.

Data analysis and availability

Analyses were conducted in R (R Core Team, 2020) and
relied heavily on the tidyverse (Wickham et al., 2019).
Statistical significance, in the case of multiple linear
regressions and SEMs, was inferred at alpha <0.05. Code
and data to reproduce these analyses are available here:
https://doi.org/10.5281/zenodo.5734200.

RESULTS

We used a total of 138,703 eBird checklists comprising
450 species’ observations for 2019 throughout peninsular
Florida. The number of grid cells included in analysis
was 933, 537, 343, 243, 175, and 132 for 5 � 5, 10 � 10,
15 � 15, 20 � 20, 25 � 25, and 30 � 30-km2 grain sizes,
respectively.

Our SEM showed a strong influence of land-cover in
predicting species richness, with urban cover the stron-
gest supported, followed by habitat heterogeneity, tree
cover, and water cover (Figure 1, Appendix S1:
Figure S3). The number of checklists at a site was also
predicted by the percentage of urban cover and habitat
heterogeneity, suggesting that these two land-cover attri-
butes influence where people submit eBird checklists.
The number of checklists was also higher in grids with
higher species richness. These patterns showed some var-
iation with grain size (Appendix S1: Figure S4).

Among these predictors, habitat heterogeneity and
urban cover were consistently the strongest predictors of
standardized completeness for both common and rare
species diversity analyses, and across grain sizes. Stan-
dardized completeness was negatively correlated with
habitat heterogeneity, water cover, and urban cover
across grain sizes, indicating consistent patterns. In other
words, standardized completeness tended to be higher at
sites with lower heterogeneity, water cover, and urban
cover. However, urban cover seemed to be a stronger

F I GURE 3 (a) The predicted number of checklists (log10

scale) necessary to meet 95% completeness when completeness is

calculated sensitive to common species (left) and sensitive to rare

species (right). The black dot represents the mean value. (b) The

mean number of checklists necessary to meet 95% completeness

(y-axis) against grain size (x-axis) where grain size is not on the

log10 scale. Grain size represents 5 � 5 to 30 � 30-km2 grid cells
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F I GURE 4 Spatial representation of the number of samples necessary to meet 95% completeness for (a) when completeness is

calculated toward dominant species sensitive and (b) toward rare species sensitive. (c) A map of species richness throughout peninsular

Florida, where species richness was predicted from a random forest model as described in the methods, where observed species richness was

the response variable and the land-cover attributes were the predictor variables. (d) There was a generally positive relationship between

species diversity and the necessary number of samples needed to reach 95% completeness for dominant species (red) and rare species (blue)

diversity measures. Results are shown for the 10-km2 grain size only
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predictor for the analysis sensitive to rare species com-
pared with the analysis sensitive to common species
(Appendix S1: Figure S5). While other predictors showed
consistent patterns among grain sizes, tree cover was neg-
atively correlated with standardized completeness at
smaller grain sizes, but the strength of this relationship
weakened as grain size increased (Figure 2).

We found that on average, the number of checklists
necessary to meet 95% sample completeness when calcu-
lating total completeness at q = 2 (dominant species sensi-
tive) was 43, 64, 96, 123, 172, and 176 for 5 � 5, 10 � 10,
15 � 15, 20 � 20, 25 � 25, and 30 � 30-km2 grain sizes,
respectively. However, when calculating total complete-
ness at q = 0 (rare species sensitive), the average number
of eBird checklists was 129, 214, 362, 498, 712, and 946 at
5 � 5, 10 � 10, 15 � 15, 20 � 20, 25 � 25, and
30 � 30-km2 grain sizes (Figure 3a). The results for q = 1
(common species sensitive) were quantitatively similar to
that of q = 2 (Appendix S1: Figures S6 and S7). The uncer-
tainty (i.e., standard deviation) in these average estimates
was higher when calculating total completeness at q = 0
(Figure 3, Appendix S1: Table S1). The relationship
between grain size and mean number of samples neces-
sary to meet 95% total completeness increased much faster
for rare species compared with dominant species, where it
appeared to level off at larger grain sizes (Figure 3b).

Our models to predict the number of checklists neces-
sary to sample in space performed relatively well (mean
R2 = 0.83; range = 0.79–0.86; Appendix S1: Table S2) for
dominant species sensitive measures (q = 2), but less well
(mean R2 = 0.39; range = 0.07–0.58; Appendix S1:
Table S2) for rare species sensitive measures. Our
unsampled sites generally had a narrower distribution of
species diversity values than our sampled sites, where our
sampled sites included some of the sites that needed the
highest number of checklists to meet 95% completeness,
suggesting that data contributed to eBird are already origi-
nating from themost diverse sites (Appendix S1: Figure S8).
We found a strong relationship between the predicted num-
ber of eBird checklists and the predicted species richness,
confirming that our separate random forest models corre-
lated well, as expected. The highest number of necessary
samples was along the coast, and the lowest number was
inland in large homogenous areas such as throughout the
Florida Everglades, a large wetland complex (Figure 4).

DISCUSSION

We used more than 100,000 citizen science sampling
events (i.e., eBird checklists) to quantify the relationships
between sampling effort, species diversity, land-cover
attributes, and sampling completeness. We found that

observed species richness was strongly modified by land
cover, with a strong effect of urban cover and habitat het-
erogeneity (Figure 1). Moreover, we demonstrate how it
is possible to predict necessary sampling effort needed to
quantify species diversity in space. When the species
diversity estimation is focused on dominant species
(i.e., q = 2), a relatively small number of samples are
needed to meet 95% sampling completeness, with an
average of 44 samples in a 5 � 5-km2 grid cell and
203 samples in a 30 � 30-km2 grid cell. Yet, if the species
diversity estimation is focused on rare species (i.e., q = 0
or species richness), substantially more samples are
needed, 322 to 530% more samples at 5 � 5 and
30 � 30-km2 grids, respectively. Ultimately, our results
highlight the potential of citizen science data to monitor
species diversity and we provide a framework for future
adaptive sampling by citizen science participants.

Biodiversity monitoring frequently relies on stratified
sampling designs, where samples are spread across the
landscape in an “equal” fashion (Bibby, 2004) to achieve
sampling to inform biodiversity estimation. Sometimes,
the number of samples is dependent on the size of a
region of interest, with larger geographic regions receiv-
ing proportionately more sampling effort (Pavlacky Jr
et al., 2017; Van Wilgenburg et al., 2020). Although
funding and accessibility may be an issue for profession-
ally designed biodiversity monitoring schemes, biodiver-
sity is not spread equally throughout the landscape.
Indeed, our results showed that species richness varies
considerably in space (Figure 4c), and consequently, sam-
pling effort should spatially match that of the underlying
species diversity (Figure 4). Moreover, monitoring
schemes often differ in terms of whether they target com-
mon, widespread species, or rare species. The optimal
sampling strategy can vary depending on whether com-
mon or rare species are the goal of the monitoring
scheme (e.g., Pacifici et al., 2016; Sanderlin et al., 2014;
Sgarbi et al., 2020). For example, Specht et al. (2017) rec-
ommend random sampling for common species and con-
ditional sampling for rare species, where more replicates
are conducted when rare species are detected. These find-
ings are consistent with our results since more spatially
uniform patterns of effort were effective when species
diversity estimation was sensitive to common species,
while more heterogeneous effort was needed when spe-
cies diversity estimation was more sensitive to rare spe-
cies (Figure 4). The challenge for biodiversity monitoring
is aligning these efforts for sampling of the entire com-
munity (i.e., both common and rare species simulta-
neously). Quantifying where more surveys are needed is
an important first step, after which data gaps can be filled
from different sources of data, such as those from profes-
sionals or volunteers, for example, by incentivizing
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volunteers to sample for the common species in addition
to the rare species (Tulloch et al., 2013).

Our analysis demonstrates the unequal sampling that
takes place across the landscape, either because of biases
in site selection, but also potentially because citizen sci-
ence participants are preselecting sites with the highest
biodiversity and habitat heterogeneity. This suggests that
the pattern of citizen science sampling is already directed
toward sites most likely to represent the highest levels
of species diversity. Repeat sampling by citizen science
participants at the same sites is not necessarily redun-
dant sampling if these sites are the most species rich,
and repeated sampling at these hotspots can be impor-
tant for improving the robustness of statistical models
(Callaghan, Rowley, et al., 2019) and even necessary
for occupancy-detection model estimation (Sanderlin
et al., 2014).

A future goal of citizen science projects might be to
encourage sampling, for example, through gamification
(Callaghan, Poore, et al., 2019), in locations where the
samples are most valuable for a given statistical objective,
for example, species diversity estimation. By understand-
ing and quantifying the necessary amount of sampling,
we can begin to reduce redundancies in the data (Boakes
et al., 2010; Courter et al., 2013), for example, by
“directing” participants. As an illustration of the potential
of adaptive sampling, using a 10 � 10-km2 grain size
(N = 1113 grid cells) and focusing on an estimate of the
number of relatively dominant species, on average, an
average grid cell needs 68 samples to meet 95% complete-
ness. With a total of 138,703 eBird checklists submitted
during 2019, each grid cell would have received 125 eBird
samples if effort were distributed equally across space.
Yet, only 537 grids had 25 or more eBird samples, illus-
trating the highly spatially skewed effort, but also
highlighting the potential of citizen science data if this
effort was more optimally spread throughout the
landscape—by directing effort to align with underlying
species diversity. Of course, it is important to acknowl-
edge that to effectively direct citizen science participants,
a social science approach will be necessary to devise the
best strategies to interact and engage with the partici-
pants of a project (Pocock et al., 2019). Nevertheless,
some participants’ motivations involve contributing to
conservation, suggesting that a subset of users would
be willing to alter their sampling efforts (Tiago,
Gouveia, et al., 2017) to inform a specific conservation-
related goal.

Most conservation planning takes place at relatively
small spatial scales, and citizen science is often seen as a
coarse source of information on species occurrences.
Beyond our general patterns of citizen science effort
needed to quantify species diversity, we found significant

differences among grain sizes and depending on whether
species diversity estimation was weighted toward domi-
nant or rare species. Unsurprisingly, we found a general
increase in the mean number of samples needed to esti-
mate species diversity with increasing grain size, but this
relationship was much stronger when species diversity
was focused on rare species (Figure 3b). For both domi-
nant and rare diversity measures, the necessary sampling
effort grows slower than the area of sampling, following a
power law with an exponent of around 0.3–0.4. This may
be a consequence of the species–area relationship, S � Az,
where S is the number of species in a cell, A is the area of
the cell, and z is an exponent (Rosenzweig et al., 1995),
with the species–area relationship being steeper for rare
species than for common species (Sanderlin et al., 2014).
This supports an approach of planning sampling effort of
fragments or land-cover units based on the species–area
relationship (Borges et al., 2009; Proença et al., 2010). In
general, our workflow performed better for diversity esti-
mates that focused on dominant species, with better model
fit for random forests fit to the common species sensitive
compared to the rare species sensitive metric (Appendix
S1: Table S2). This could be a result of the increased confi-
dence in documenting the common species with eBird
data, but also a result of participants who are inclined to
look for new species (e.g., vagrants), such that species
accumulation continues to increase indefinitely at popular
birding locations due to continued search effort by birders
(see the Patagonia Picnic Table Effect; https://en.
wikipedia.org/wiki/Patagonia_picnic_table_effect). Or a
biological explanation could be that diversity patterns of
rare species are intrinsically less predictable than those of
dominant species (Lennon et al., 2011), and thus, our
model fits are poorer for diversity estimates most sensitive
to rare species.

While our case study focused on Florida, the approach
could be generalized to other parts of the world, given the
global increase in citizen science data (Pocock et al., 2017).
We focused on an annual temporal resolution, but smaller
temporal windows (e.g., seasonally or monthly) could sim-
ilarly be implemented to quantify effort needed to estimate
species diversity (Figure 4). In the case of Florida, for
example, the effort to estimate species richness would be
highest during spring and fall migration when bird diver-
sity is highest in the region. The temporal window will
ultimately depend on the quantity of data in a given locale.
An important component of our framework is relying on
the strong relationships we found between land-cover met-
rics and species richness (Figures 1 and 2), and our SEM
model suggested that variables with good predictive power
of sampling effort are likely to be strongly linked to species
diversity. We presented the results of the two extremes
(q = 0 and q = 2) of the sampling completeness curve, but
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this curve is continuous (Chao et al., 2020), providing an
interested user the opportunity to fine-tune exactly how
much preference they want to weight toward rare or domi-
nant species. We found little difference between q = 1 and
q = 2 (Appendix S1: Figures S6 and S7, Table S1), but this
could change when abundance-based calculations are used
as opposed to incidence-based calculation—all of which is
adaptable from our proposed workflow. Other studies and
implementation of this approach could tailor the predic-
tors, such as land use or other land-cover attributes or
environmental covariates, to their specific context. Addi-
tionally, we only focused on one measure of sampling
completeness, and other measures of survey completeness
(e.g., Lobo et al., 2018) could be used in implementation of
this framework.

Citizen science data will continue to play an important
role in biodiversity monitoring in future (Chandler
et al., 2017; McKinley et al., 2017). Despite their promise,
there remains reluctance to use these data (Burgess
et al., 2017), in large part stemming from gaps and redun-
dancies. To increase utility of these data, a key goal is to
understand how biodiversity sampling should be con-
ducted in space and time. We find relatively few samples
are necessary to meet 95% completeness, thus allowing for
relatively robust comparisons of species diversity across
the landscape. Hence, our results highlight the potential
of citizen science data to make informed comparisons of
species diversity in space and/or time. However, the sam-
pling effort inherently depends on the monitoring goal,
for example, whether all species or only more common
species are targeted. The generalizable workflow pres-
ented here allows for the quantification of sampling effort
needed to estimate species diversity with citizen science
data and shows how citizen science sampling effort might
be targeted toward better estimates of biodiversity.
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